PMC-S723-A 三相数字式多功能测控电表 用户说明书

危险和警告

本设备只能由专业人士进行安装,对于因不遵守本手册的说明所引起的故障,厂家将不承担任何责任。

触电、燃烧或爆炸的危险

- 设备只能由取得资格的工作人员才能进行安装和维护。
- 对设备进行任何操作前,应隔离电压输入和电源供应,并且短路 所有电流互感器的二次绕组。
- 要用一个合适的电压检测设备来确认电压已切断。
- 在将设备通电前,应将所有的机械部件,门和盖子恢复原位。
- 设备在使用中应提供正确的额定电压。

不注意这些预防措施可能会引起严重伤害。

本说明书版权属深圳市中电电力技术股份有限公司所有,未经书面许可,不得复制,传播或使用本文件及其内容,违犯者将要对所造成的损失负责。深圳市中电电力技术股份有限公司保留所有版权。

我们已经检查了本手册关于描述硬件和软件保持一致的内容。由于不可能完全消除差错,所以我们不能保证完全的一致。本手册中的数据将定期审核,并在新一版的文件中做必要的修改,欢迎提出修改建议。以后版本中的变动不再另行通知。

目 录

1	装置	置简介	1
	1.1	概述	
	1.2	产品功能	
2	技ス	术指标	
	2.1	环境条件	2
	2.2	工作电源	2
	2.3	电压线路	2
	2.4	电流线路	2
	2.5	开关量输入(DI)	2
	2.6	开关量输出(DO)	3
	2.7	过载能力	3
	2.8	通信接口	3
	2.9	端子螺丝紧固力矩	3
	2.10	外壳防护等级	3
	2.11	污染等级	3
	2.12	准确度	3
	2.13	绝缘性能	4
	2.14	机械性能	4
	2.15	电磁兼容性	4
3	安排		5
	3.1	安装图	5
	3.2	端子图	6
	3.3	接线原理图	6
	3.4	端子接线	8
4	面材	反操作	10
	4.1	面板显示	10
	4.2	段码显示说明	11
	4.3	按键说明	11
	4.4	显示界面	12
	4.5	显示自检	13
	4.6	参数设置	13
5	功能	能介绍	18

5.1	基本测量	18
5.2	电能质量监测功能	20
5.3	电能计量	20
5.4	开关量监视	20
5.5	继电器输出	21
5.6	事件顺序记录(SOE)	21
5.7	定值越限	21
6 常见	见故障分析	22
7 质量	量保证	23
7.1	质量保证	23
7.2	质保限制	23
8 联系	系我们	24

1 装置简介

1.1 概述

PMC-S723-A 三相数字式多功能测控电表,以工业级微处理器为核心,处理速度高,具有很高的性价比。PMC-S723-A 电表主要适用于较小安装尺寸的配电柜,可以满足空间比较苛刻的低压柜及楼层配电箱安装要求,为用户节省大量投资和使用空间。

PMC-S723-A 电表有着广泛的用途,可以应用于任何需要用电和配电的地方,主要有:

- 工厂动力系统自动化、负荷控制;
- 发电厂电气 DAS;
- 智能楼宇系统;
- 无功补偿系统。

1.2 产品功能

表 1-1 基本功能

功能	说明
	三相电压输入(V1、V2、V3)
输入和	三相电流输入(I1、I2、I3)
输出	两路开关量输入(DI1~DI2)
	两个继电器输出(DO1~DO2)
基本测量	三相相电压及平均值、三相线电压及平均值、三相电流及平均值、三相有功功率及总值、三相
奎华 侧里	无功功率及总值、三相视在功率及总值、三相功率因数及总值、频率、相角
	三相及单相的以下电能数据:
电能计量	正向有功电能、反向有功电能
	正向无功电能、反向无功电能
山北兵 見	谐波数据: 三相电压/电流谐波有效值及谐波畸变率
电能质量	电压/电流不平衡度
事件记录	16 个事件记录,分辨率 1ms;包括 DI 变位、DO 动作、越限、清除事件等。
定值越限	最多可设 6 组定值越限,包括过压、欠压、过流、功率因数低限、过频、低频,可产生 SOE、
上但	触发继电器动作
	1 个 RS-485 口
通信方式	通信规约:MODBUS-RTU
	通信速率支持 1200bps、2400bps、4800bps、9600bps、19200bps、38400bps

2 技术指标

2.1 环境条件

环境温度: -25℃~+70℃

贮存温度: -40℃~+85℃

相对湿度: 5%~95%(无冷凝)

大气压力: 70 kPa~106 kPa

海拔高度: <3000m

2.2 工作电源

电源电压: 95~250V AC/DC, 47~440Hz

功率消耗: <2W

2.3 电压线路

额定电压 Un: 220V L-N/380V L-L、57.7V L-N/100V L-L

测量范围: 20V~1.2Un

启动电压: 20V

频率: 50Hz

功率消耗: < 0.02VA/相

2.4 电流线路

额定电流 In: 5A、1A

测量范围: 4mA~1.2In

启动值: 4mA

功率消耗: <0.15VA/相@5A

2.5 开关量输入(DI)

可选 2 路 DI

激励方式:内激励

事件分辨率: 1ms

2.6 开关量输出(DO)

可选 2 路电磁式继电器输出

接通容量: 5A 连续, 250V AC/30V DC

分断容量: L/R=40ms, 10000 次

220V DC, 0.1A

110V DC, 0.3A

48V DC, 1A

动作时间: <10ms

返回时间: <10ms

2.7 过载能力

电压线路: 1.2 倍额定电压,连续工作; 2 倍额定电压,允许 1s

电流线路: 1.2 倍额定电流,连续工作; 10 倍额定电流,允许 10s; 20 倍额定电流,允许 1s

2.8 通信接口

接口类型: RS-485, 二线方式

工作方式: 半双工

通信速率: 1200、2400、4800、9600、19200、38400 bit/s

通信协议: MODBUS RTU

2.9 端子螺丝紧固力矩

端子螺丝紧固力矩: 0.5N·m

2.10 外壳防护等级

防护等级: IP52

2.11 污染等级

污染等级: 2级

2.12 准确度

被测量	最大允许误差级准确度等级	分辨力
电压	±0.2%	0.1V

电流	±0.2%	0.001A
有功功率	±0.5%	0.001kW
无功功率	±0.5%	0.001kvar
视在功率	±0.5%	0.001kVA
有功电能	0.5S 级,GB/T 17215.322-2008(IEC 62053-22: 2003)	0.01kWh
无功电能	2级,GB/T 17215.323-2008(IEC 62053-23: 2003)	0.01kvarh
功率因数	±1.0%	0.001
频率	±0.02Hz	0.01Hz
谐波畸变率	IEC 61000-4-7 B级	0.1%

2.13 绝缘性能

试验项目	标准依据		
绝缘电阻	GB/T 13729-2002,3.6.1(绝缘电阻大于 100MΩ)		
脉冲电压试验	GB/T 4793.1-2007(IEC 61010.1:2001),6.8(峰值 6kV,1.2/50 μ s 冲击)		
交流电压试验	GB/T 4793.1-2007(IEC 61010.1:2001),6.8(有效值 2kV,1min)		

2.14 机械性能

试验项目		标准依据	严酷等级
振动响应试验			
振动试验(正弦)	振动耐久试验	GB/T 11287—2000(IEC 255-2-1:1989)	1 级
冲击试验	冲击响应试验	GB/T 14537—93 (IEC 255-2-2)	1 级
7年山 枫沙	冲击耐受试验	GB/T 14537—93 (IEC 255-2-2)	1级
碰撞试验		GB/T 14537—93 (IEC 255-2-2)	1级

2.15 电磁兼容性

试验项目	标准依据	严酷等级
静电放电抗扰度试验	GB/T 17626.2—2006; IEC 61000-4-2: 2001	4级
射频电磁场辐射抗扰度试验	GB/T 17626.3—2006; IEC 61000-4-3; 2002	3 级
电快速瞬变脉冲群抗扰度试验	GB/T 17626.4—2008; IEC 61000-4-4: 2004	4级
浪涌 (冲击) 抗扰度试验	GB/T 17626.5—2008; IEC 61000-4-5; 2005	4级
射频场感应的传导骚扰抗扰度	GB/T 17626.6—2008; IEC 61000-4-6; 2006	3 级
工频磁场抗扰度试验	GB/T 17626.8—2006; IEC 61000-4-8: 2001	4级
振铃波抗扰度试验	GB/T 17626.12—2013; IEC 61000-4-12: 2006	3 级
无线电骚扰限值	GB 9254—2008; CISPR 22: 2006	B 级

3 安装与接线

3.1 安装图

环境

装置应安装在干燥、清洁、远离热源和强电磁场的地方。

安装位置

通常安装在开关柜中,可使装置不受油、污物、灰尘、腐蚀性气体或其他有害物质的侵袭。安装时要注意检修方便,有足够的空间放置有关的线、端子排、短接板和其他必要的设备。

安装方法

- 1) 将装置安装到尺寸为 68mm×68mm 的开孔。
- 2) 将装置卸去安装卡,从前向后推入盘面的安装孔。
- **3)** 将四个安装卡顺着装置四角的沟槽装上,向前推紧,使安装卡的前端挤紧开关盘,这样装置被水平地安装在开关柜体上。

安装尺寸

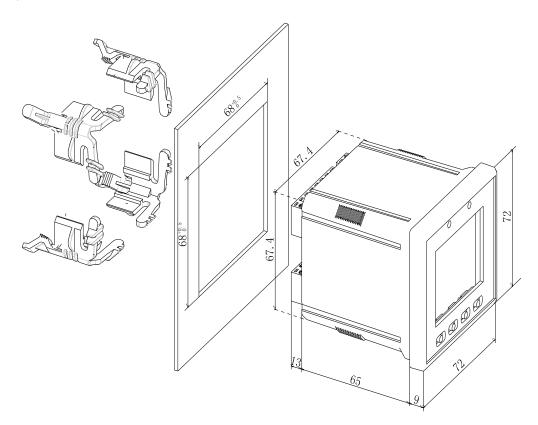
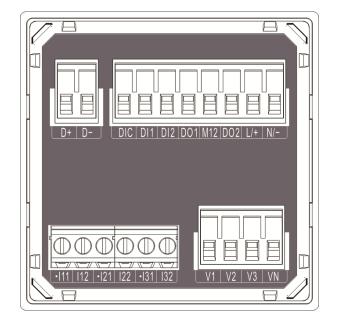



图 3-1 安装尺寸图

5

3.2 端子图

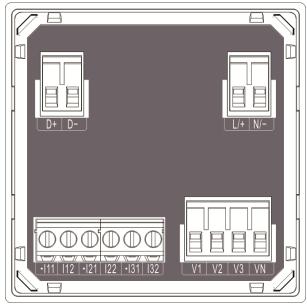


图 3-2 端子图 (2DI+2D0)

图 3-3 端子图 (无 1/0)

表 3-1 端子定义

端子标识	端子定义
D+, D-	通信端子
L/+, N/-	电源端子
• 111, 112, • 121, 122, • 131, 132	电流端子
V1, V2, V3, VN	电压端子
DIC, DI1, DI2	开关量输入端子
DO1, M12, DO2	开关量输出端子

3.3 接线原理图

PT 的二次侧不能短路

CT 的二次侧不能开路。在断开 CT 和监控回路连接时,使用短接块将 CT 的二次侧短接。 装置适用于各种三相系统,请仔细阅读本章节,以选择合适的接线方式。

接入的电压, 应在装置的额定电压范围以内。

下文说明了各种情况下的典型接线图,电压互感器简称 PT,电流互感器简称 CT。

PT一次侧必须有断路器或熔断器提供保护,如果使用的PT额定容量大于25VA,则PT二次侧也要装熔断器CT应接到短接端子或测试盒上,以保证CT接线的安全。

PT 和 CT 一次侧的励磁将在 PT 和 CT 二次侧电路产生较大的电压和电流,所以在安装仪表时一定要有必要的安全措施,例如拆下 PT 的熔断器、短接 CT 二次侧等。

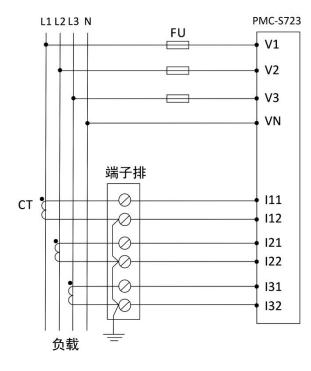


图 3-4 WYE, 无 PT, 3CT

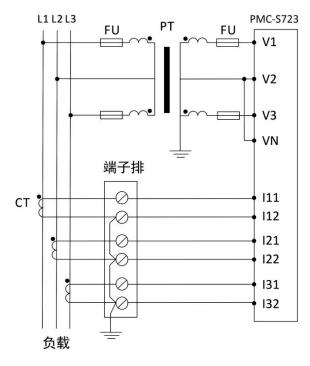


图 3-6 DELTA, 3CT

系统设置: DELT

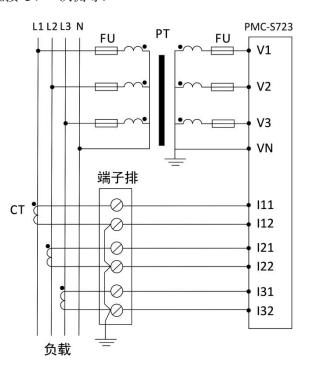


图 3-5 WYE, 3PT, 3CT

系统设置: WYE

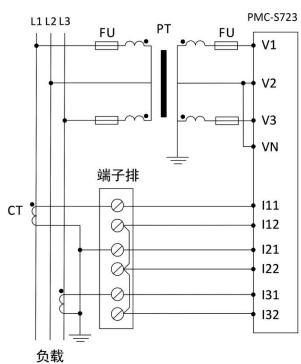


图 3-7 DELTA, 2CT

系统设置: DELT

3.4 端子接线

工作电源

用于交流系统时,相线接 L/+端,中性线接 N/-端。

用于直流系统时,正极接 L/+端,负极接 N/-端。

电压电流输入接线

(1) 三相电压输入(V1、V2、V3、VN)

本装置可以直接接入 220V L-N(380V L-L) 的星形系统。如果被监测系统的电压高于 220/380V,则需要使用电压互感器(下文均表示为 PT)把电压按比例降到装置允许的输入范围内。

为了正确使用装置, PT的选择很重要(如需使用PT),请按照以下要求选择PT的参数:

- 星形系统,PT原边额定值应等于系统相电压额定值,或者略高于相电压额定值。
- 三角形系统, PT 原边额定值应等于系统线电压额定值。
- 无论星形或三角形系统, PT 二次侧额定值都必须在额定电压输入范围以内。
- PT的额定负载能力必须大于所有并接于PT上的本装置和其他接入设备负荷的总和。
- PT 的精度直接影响本装置总的测量精度,建议用户选用精度高于 0.5 级的 PT。
- (2) 三相电流输入(I11、I12、I21、I22、I31、I32)

本装置必须使用电流互感器(下文均表示为 CT)才能测量各相的电流。三相 CT 的变比参数是统一整定的,所以三相 CT 变比必须相同。电流输入选项如下:

- 本装置三相电流额定输入有 5A 和 1A 两种配置。
- CT 的额定负载能力必须大于本装置、接线电缆、其他接入设备负荷的总和。通常 CT 原边额定值根据最大负荷来选择,并选用最接近标准规格的 CT。
- CT 的精度也影响本装置总的测量精度,建议用户选用精度高于 0.5 级的 CT。另外, PT 和 CT 的 角差不一致也会影响功率、电能等的测量精度。

通信接线

RS-485 通信口,端子标记为 D+、D-。

RS-485 通信方式允许一条总线上最多接 32 台 PMC 系列仪表,通过一个 RS-232/RS-485 转换器与上位机连接。通信电缆可以采用普通的屏蔽双绞线,总长度不宜超过 1200 米,各个设备的 RS-485 口正负极性必须连接正确,电缆屏蔽层一端接地。如果屏蔽双绞线较长,建议在其末端接一个约 120Ω 的电阻以提高通信的可靠性。通信接线如下:

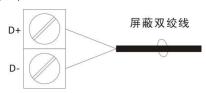


图 3-8 通信接线

DI 接线

装置选配 2 路开关量输入,端子标记为 DI1、DI2、DIC,用于检测外部接点的状态。装置内部有一个 24V 的直流自激电源,用于无源触点监测。面板上会显示 DI 相应的状态。

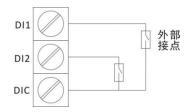


图 3-9 DI 接线示意图

DO 接线

装置内部有 2 个电磁型继电器,端子排标记为 DO1、M12、DO2,可直接切断 250VAC/5A 或 30VDC/5A 的负载。当负载电流较大时,建议增加中间继电器。

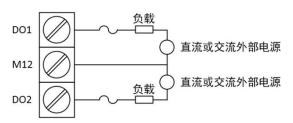


图 3-10 DO 接线示意图

4 面板操作

所有安装接线完毕并检查无误后,便可通电开机。以下章节将介绍如何利用前面板按键整定参数。

4.1 面板显示

该装置采用三排高亮度的液晶显示,最多能显示3行数据。显示内容见下图:

图 4-1 显示界面

表 4-1 液晶显示符号说明

<i>N</i> ==	***	W all	
分区	液晶显示图形	说明	
A区	略	测量数据显示区	
	8	与其他符号配合,区别测量量是电压量还是	
	8	电流量: 电压量显示量, 电流量显示	
B区	L- N L-L	分别表示相电压、线电压、负号	
	THD UNB DMD	分别表示谐波畸变率、不平衡度、需量	
	MAX MIN	分别表示最大值、最小值	
	Ф РЕ	分别表示相角、功率因数	
		符号整体点亮分别表示频率、有功电能、视	
	Hz MkWh kVA Mkvarh MkVAh	在功率、无功电能、视在电能、电流、温度	
	mA ℃	的单位,可部分点亮表示显示量单位,如	
C 17		MkWn表示有功功率单位	
C区	%	谐波畸变率单位	
	СОМ	通讯标志。该符号闪烁时,表示装置正在发	
	COIVI	送或者接收数据	
	€	越限报警标志	

	•	表示 4 个象限: ◆	
		DI1~4 状态:	
	0000	●代表通,○代表断	
D E	- 1/- - 1/-	DO1~2 状态:	
D区		Ⅎ∕ Ͱ代表通,Ⅎ Ͱ 代表断	
	IMP EXP NET TOT	分别表示正向电能、反向电能、电能净值、	
	IMP EAP NEI IOI	电能总和	

4.2 段码显示说明

装置采用段码显示, 定义见下表。

4 3 0 1 2 4 J P 6 5 6 7 8 9 b d Α В С D Ε F F G Н H ı J pŋ Κ L Ν 0 Μ N Ρ Q R S Т P V Υ U W Ш

表 4-2 段码对照表

4.3 按键说明

装置具有**4**个按键,在"参数显示"状态及"参数整定"状态下具有不同的作用。在"参数显示"状态下,可以浏览各测量数据,在"参数整定"状态下,输入密码后,可以整定参数定值。

拉牌台以	参数显示状态	参数设置模式	
按键定义	(默认状态)	菜单/参数浏览	参数修改
	短按切换显示测量参数,长		
System/◀	按进入轮显模式,轮显模式	返回上一级菜单	光标左移一位
	下按任意键可推出轮显模式		
	切换显示分相参数,长按可		
Phase/ ▲	将当前显示页面设置为默认	浏览上一个菜单/参数	数值递增
	页面		
Enorgy/\(\neq\)	切换显示电能数据	浏览下一个菜单/参数;	数值递减
Energy/▼	切厌业小电比效场	在一级菜单选择"YES"	数阻 <i>地</i> 频

表 4-3 按键操作

		的状态下,进入二级菜单		
Setup/ <i>↩</i>	长按进入设置模式	长按2秒进入整定状态→在每个参数整定的页面,短		
		按一下,参数闪烁,表示可以修改→修改完毕后,		
		再短按,参数确认→长按2秒,退出整定,恢复参数		
		显示。		

4.4 显示界面

表 4-4 PMC-S723-A 星型接线

显示内容		第一排显示 第二排显示		第三排显示	
0	屏1 (默认界面)	总有功功率	平均电流	总功率因数	
System 测量组	屏2	频率	平均相电压	平均线电压	
侧里组	屏3	总有功功率	总无功功率	总视在功率	
	屏1	A相电流	B相电流	C相电流	
	屏2	A相电压	B相电压	C相电压	
Phase - 测量组 -	屏3	AB线电压	BC线电压	CA线电压	
	屏4	A相有功功率	B相有功功率	C相有功功率	
	屏5	A相无功功率	B相无功功率	C相无功功率	
	屏6	A相视在功率	B相视在功率	C相视在功率	
	屏 7	A相功率因数	B相功率因数	C相功率因数	
	屏1	正向有功电能kWh			
Energy	屏2	反向有功电能kWh			
测量组	屏3	正向无功电能kvarh			
	屏4	反向无功电能kvarh			

表 4-5 PMC-S723-A 角型接线

显示内容		第一排显示 第二排显示		第三排显示	
0	屏1(默认界面)	总有功功率	平均电流	总功率因数	
System 测量组	屏2	频率		平均线电压	
侧里组	屏3	总有功功率	总无功功率	总视在功率	
Phase	屏1	A相电流	B相电流	C相电流	
测量组	屏2	AB线电压	BC线电压	CA线电压	
	屏1	正向有功电能kWh			
Energy	屏2	反向有功电能kWh			
测量组	屏3	正向无功电能kvarh			
	屏4	反向无功电能kvarh			

12

4.5 显示自检

参数显示模式下,同时长按"Phase"和"Energy"两个按键,将进入显示自检状态,所有液晶段码全亮。 在自检状态下按任意键,将退出自检,返回到参数显示界面。

4.6 参数设置

显示模式下,按"Setup"键 2 秒,显示"PROG",表示进入了整定模式,输入密码后,可整定参数。 再按"Setup"键 2 秒,可返回显示状态。 参数设置模式下,菜单总览见图 4-3,详细内容见表 4-14。

(1) 参数设置模式菜单总览图

图 4-3 整定模式结构图

13

(2) 参数设置菜单

表 4-6 参数设置菜单

	参数	说明	范围/待选项	默认值
一级菜单	二级菜单			
Prob		进入设置界面		
PA55		输入密码	0~9999	0
PASS SEF no		是否设置密码	YES / NO	NO
	nELJ PASS I	设置新密码	0~9999	0
545 5EF no		基本参数设置	YES / NO	NO
	FYFE LIYE	设定接线方式	LUME 四线星形; MELF三角形; MEPM演示模式	LIHE
		设置一次侧额定电流	1~30000	5
		设置二次侧额定电流	1∼5	5
	PF (设置一次侧额定电压	1~1000000	100
	PFZ	设置二次侧额定电压	1~690	100
	PF	功率因数计算方式	IEC、-IEEE、IEEE	IEC
	LuA	视在功率计算方式	^以 :矢量法 ⁵ :标量法	Ħ
	blfa	设置液晶背光时间	0~60min	5
		设置通信参数	YES / NO	NO
	l d	设定通信地址	1~247	100
	LALI	设置波特率	1200/2400/4800/9600/	9600

			19200/38400	
	IF6	设定奇偶校验位	8N2/8O1/8E1/8N1/ 8O2/8E2	8E1
			002/0L2	
		设置时间	YES / NO	NO
	1915) H TTT 1-1 H-1	YYMMDD	
	JAF E	设置日期	如: 20150518	
			HHMMSS	
		设置时钟	如: 162049 表示	
			16 点 20 分 49 秒	
l nFo no		查看装置信息	YES / NO	NO
	FLI	显示固件版本	X.XX.XX,例如: 1.00.00	
	Fraf	+回 <i>V</i> 与 	X.X 例如 1.0 代表规约	
	uEr	规约版本	为 V 1.0	
		软件版本最新日期	如 20190518	

[注]: 由上级菜单进入下级菜单后,按"System"键可以返回上级菜单。

(3) 参数设置说明

- 如果不输入密码或输入密码错误,则只能查看参数值,不能进行修改;
- 如果设置参数超出了范围,参数设置不成功,不会被实际写入仪表;
- 对于一级菜单,如果选择"NO",则不会显示子菜单;
- 密码输入正确时,在每页参数界面下,先按一下"Setup",数值出现跳动,这时才能修改参数值。 修改完毕,再按一下此键,将确定此参数值。

(4) 修改密码

装置出厂默认设置密码为 0, 若要修改参数设置,必须先输入正确的口令,否则只能查看参数,不能修改。密码可由 1~4 位的 0~9 的数字组成。

注:为了防止遗忘密码,修改密码以后请将密码记录下来,忘记密码将不能进入整定模式。在输入密码进入整定模式以后,屏幕会出现输入密码页面,此时输入新密码即可。

(5) 参数设置举例

设置 PMC-S723-A 装置 CT 为例,将默认值 5/5 修改为 50/5。

操作	面板显示
长按 Setup/⇔键 2 秒,进入整定菜单	Pro6

	FIVIC-3123-F
短按 Energy/▼键,输入密码	PASS
短按 Setup/↔键,光标闪烁,输入默认密码 0	PASS I-M#
短按 Setup/⇔键,确认密码,0 不再闪烁	PASS
短按 Energy/▼键,设置新密码菜单	PH55 567 no
短按 Energy/▼键,系统参数设置菜单	
短按 Setup/←键,no 开始闪烁,按 Energy/▼键,变为 yes	
短按 Setup/⇔键确认,进入子菜单,将 CT1 设置为 50	
短按 Setup/⇔键,光标开始闪烁,修改 CT1 数值	5 - 05年
短按 System/◀键,光标左移一位至十位	N/K
短按 Power/▲键,直至十位数值递增为 5	N/A
短按 System/◀键,使光标移至个位	

短按 Energy/▼键,直至光标所在个位变为 0	
	FI MM
短按 Setup/←键,修改确认	
短按 Energy/▼键,找到 CT2 设置项,CT2 默认为 5,不必修改	
	J
长按 Setup/←键 2 秒,退出整定菜单,恢复为默认界	
面	

5 功能介绍

5.1 基本测量

装置可提供实时三相测量参数和状态参数,所有参数均能通过显示面板或通信获得。

表 5-1 基本测量参数

类型	描述	1	2	3	总和	平均
	相电压	√	√	√		√
电压	线电压	√	√	√		√
七 丛	电压不平衡度				V	
	角度分析	√	√	√		
	电流	√	\checkmark	√		√
电流	电流不平衡度				V	
	角度分析	√	√	√		
	有功功率	√	√	√	√	
功率	无功功率	√	√	√	√	
	视在功率	√	√	√	√	
功率因数	功率因数	√	√	√		√
频率	频率(A 相电压)[注 1]	√				
	电压谐波有效值	√	√	√		
谐波	电流谐波有效值	√	V	V		
	电压谐波畸变率	√	V	V		
	电流谐波畸变率	√	V	V		

[注 1]: WYE 接线时,如 Ua 为零时,则以 Ub 的频率为基准;如果 Ub 也为零时,则以 Uc 的频率为基准;DELTA 接线时,基准优先顺序分别是 Uab、Ubc。

功率的极性表示方法

PMC-S723-A 提供双向的功率计算,功率及功率因数的极性表示方法如图 5-1 所示。

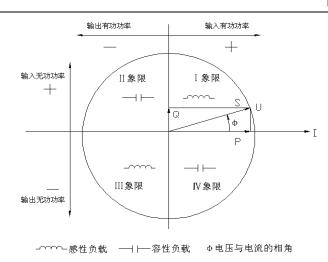


图 5-1 功率读数极性表示

功率因数定义方法

功率因数的符号有三种定义方法: IEC 定义、IEEE 定义以及-IEEE 定义,采用何种定义方法可以通过装置面板或通信整定。IEC 与 IEEE 两种功率因数符号的定义如图 5-2 所示,-IEEE 的符号定义与 IEEE 的相反。

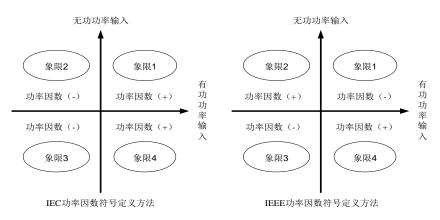


图 5-2 功率因数的定义方法

当装置显示的功率或功率因数正负号与实际输入不一致时,有可能是接入装置的电流接线反相,如不方便更改接线时,可以通过装置面板整定或通信整定将电流方向调整过来,整定菜单见表 4-3。

视在功率计算方法

总视在功率有两种计算方法:标量法和矢量法,可以通过装置面板或通信整定,两种计算方法公式如下:

矢量法:
$$kVA_{total} = \sqrt{kW_{total}^2 + k \operatorname{var}_{total}^2}$$

标量法:
$$kVA_{total} = kVA_a + kVA_b + kVA_c$$

注意: 选择不同的总视在功率计算方法, 会得出不同的平均功率因数计算结果和视在电能累计结果。

5.2 电能质量监测功能

5.2.1 不平衡度

在理想的三相电源供电系统中,ABC 三相电压和电流幅值相等,相位相差 120°。当实际系统偏离上述情况时,就产生了不平衡问题及相应的电源利用效率降低的问题。如发电机和大型电动机,负荷不平衡造成设备的不对称运行,产生负序分量,会引起设备过热和损耗,缩短设备的使用寿命。

本装置可测量电压、电流的负序不平衡度, 计算方法如下:

$$u_2 = \frac{\text{电压负序分量}}{\text{电压正序分量}} \times 100\%$$

$$i_2 = \frac{\text{exx} \triangle \text{P} \triangle \text{E}}{\text{exx} \triangle \text{P} \triangle \text{E}} \times 100\%$$

5.2.2 谐波分析

PMC-S723-A 装置可提供电压/电流的谐波有效值及谐波畸变率, 计算数据如下:

谐波畸变率使用 IEEE 计算方法, 定义如下:

电压的谐波畸变率:

$$HD_U = \frac{U}{U_1} \times 100\%$$

其中: U_1 —— 电压基波幅值。

电流的谐波畸变率:

$$HD_I = \frac{I}{I_1} \times 100\%$$

其中: I₁ — 电流基波幅值。

5.3 电能计量

PMC-S723-A 基本的电能参数包括:正向有功电能(kWh)、正向无功电能(kvarh)、反向有功电能(kWh)、反向无功电能(kvarh),读数分辨率为 0.01。最大值为 9,999,999.99,超出此值将翻转为 0,重新进行累计。

通过面板或通信,可以将所有电能数据清零,也可设置有功电能、无功电能底值。

5.4 开关量监视

装置可选配 2 路 DI, 开关量输入 DI1、DI2,每路都可检测外部无源接点的状态。通过显示或通信可以查看开关量输入的实时状态。开关量变位事件将记入 SOE 事件,时间分辨率为 1ms。

5.5 继电器输出

装置可选配 2 个电磁型继电器,端子排标记为 DO1、M12、DO2,可通过通信进行遥控出口,直接 切断 250VAC/5A 或 30VDC/5A 的负载,如果应用于 220V 直流,则分断能力为 0.2A。

使用继电器前应注意:装置初次上电后需进行整定,要测试继电器的通信遥控功能是否完好。

5.6 事件顺序记录(SOE)

可记录 16 个事件,停电不丢失。可记录包括装置断电、开关量输入变位和参数修改等事件,并记录 发生日期和时间。时间分辨率为 1ms。

所有事件记录可通过通信口供上位机读取,如果 **16** 个事件记录满将从第一个事件开始覆盖旧记录。 为了及时读取到所有事件记录,应保持装置和上位机实时通信。

通过面板或上位机可以清除 SOE 记录。

5.7 定值越限

定值越限系统只能通过通信由上位机软件进行整定,最多可设置6种固定报警方式,包括以下内容:

- 1) 越限参数选择:
- 过压报警
- 欠压报警
- 过流报警
- 欠功率因数报警
- 过频报警
- 欠频报警
- 2) 延迟时间:指参数值达到动作定值或返回定值,并保持一段时间后,才会产生报警的 SOE 事件。 设置范围 0~9999 秒。
 - 3) 触发类型: 所有越限动作或返回都会产生 SOE 记录, 还可选择是否触发继电器。

6 常见故障分析

▶ 装置上电后无显示

- 检查电源电压和其他接线是否正确,电源电压应在工作范围以内;
- 关闭装置和上位机,再重新开机。

▶ 装置上电后工作不正常

• 关闭装置和上位机,再重新开机。

▶ 电压或电流读数不正确

- 检查接线模式设置是否与实际接线方式相符;
- 检查电压互感器 (PT) 、电流互感器 (CT) 变比是否设置正确;
- 检查 GND 是否正确接地;
- 检查屏蔽是否接地;
- 检查电压互感器 (PT) 、电流互感器 (CT) 是否完好。

> 功率或功率因数读数不正确,但电压和电流读数正确

• 比较实际接线和接线图的电压和电流输入,检查相位关系是否正确。

➤ RS-485 通信不正常

- 检查上位机的通信波特率、ID 和通讯规约设置是否与装置一致;
- 请检查数据位、停止位、校验位的设置和上位机是否一致;
- 检查 RS-232/RS-485 转换器是否正常;
- 检查整个通信网线路有无问题(短路、断路、接地、屏蔽线是否正确单端接地等);
- 关闭装置和上位机,再重新开机;
- 通讯线路长建议在通讯线路的末端并联约 100~200 欧的匹配电阻。

注: 如果有一些无法解决的问题,请及时与我们公司的售后服务部门联系

7 质量保证

7.1 质量保证

所有售给用户的新装置,在售给用户之日起一定年限内,对其因设计、材料和工艺缺陷引起的故障实行免费质量保证。如经认定产品符合上述质保条件,供应商将免费修复和更换。

供应商可能要求用户将装置寄回生产厂,以确认该装置是否属于免费质保范围,并修复装置。

7.2 质保限制

以下装置的问题不属免费质保范围:

- 由于不正确的安装、使用、存储引起的损坏。
- 超出产品规定的非正常操作和应用条件。
- 由非本公司授权的机构或人修理了的装置。
- 超出免费质保年限了的装置。

8 联系我们

深圳市中电电力技术股份有限公司

地址:深圳市福田区车公庙泰然工贸园 201 栋 8 楼西

邮编: 518040

总机: 0755-83423089 传真: 0755-83410306

技术服务(售后)电话: 400-9916-218

网址: www.cet-electric.com